

Geotextiles made of staple polyester fiber, guaranteed by the (f) mark, and of spunbond polyester fiber (FC)

- rot-proof •
- resistant to mould and rodents
- easy to lay •
- resistant to UV rays •

Freudenberg Politex Building ReEvolution

INTRODUCTION

Dreno has been used for many years in civil and hydraulic engineering and is indispensable for "structuring" the ground to protect against instability and ravelling due to its capacity to redistribute loads, to avoid contamination of layers of various grain sizes and to prevent the erosion caused by water infiltration.

REINFORCEMENT OF ROAD AND RAILWAY BEDS

The critical point is at the base of the embankment where **Dreno**^{text} redistributes mechanical stress and acts as an anti-contaminant.

Dreno[®] prevents the ground from absorbing the "mix" that makes up the embankment, which would otherwise gradually lose its structure.

Fig 1.

- 1. Concrete or bituminous conglomerate
- 2. Rolled stabilized mix
- 3. Drenotex
- 4. Sub-base

Fig 2.

- 1. Surface gravel layer
- 2. Drenotex
- 3. Layer of various grain sizes
- 4. Drenotex
- 5. Natural ground

Freudenberg Politex Building ReEvolution

CONSTRUCTION OF UNDERGROUND GARAGES AND ROOF GARDENS

Dreno fers mechanical protection for waterproof roofs and acts as an anti-contaminant and draining agent to be laid between the gravel layer and the made ground, when the surface is to be used as a garden.

- 1. Floor slab
- 2. Waterproofing
- 3. Drenotex with mechanical protection function
- 4. Draining gravel layer
- 5. **Dreno**tex with anti-contaminating and draining function
- 6. Ground and grass surface
- 7. Draining channel

SAFETY OF LANDFILL SITES

Where the excavated area is waterproofed to reduce the risk of contamination. The mechanical function of **Dreno**[®] protects against the risk of cracks in the waterproofing layer, which would otherwise lead to pollution of the ground by the substances present in the sewage.

REINFORCEMENT OF SLOPES AND HILLSIDES

Excess water in the ground filters through the layers of soil, undermining its compactness. **Dreno**¹⁽²⁾ provides protection, by acting as a filter to prevent the dispersion of loose soil.

Drenotex

Freudenberg Politex Building ReEvolution

LAYING INSTRUCTIONS

Dreno[®] is extremely easy to lay despite its numerous and diverse applications. Lay the first sheet and proceed with subsequent sheets until the whole area is covered, making sure that the sheets overlap by at least 20-30 cm lengthwise and 50 cm crosswise.

TECHNICAL DATASHEET

		100	150	200	250	300	U. o. M.
Weight	UNI EN 965	100	150	200	250	300	g/m²
Density				138			kg/m³
Composition							
Technology							
Melting temperature			°C				
Resistance to UV rays and chemical agents							
Rot, mould, bacteria and rodent resistance							
Humidity regain 20° 65% hum.			%				
Tensile strength at break MD/CD	UNI EN ISO 10319	5	7,5	10	15	18	kN/m
Elongation at break MD/CD	UNI EN ISO 10319		%				

SUPPLY CHARACTERISTICS

	100	150	200	250	300	U. o. M.
Width			300			cm
Length			100			m
Diameter		cm				
Roll weight	30	45	60	75	90	kg

Drenotex

TECHNICAL DATASHEET

		Drenotex (()									
		130	150	200	300	400	500	600	700	800	U. o. M.
Weight	UNI EN 965	130	150	200	300	400	500	600	700	800	g/m²
Certifications	UNI EN ISO 14001			CE	nr. 14	88 - CI	OP - 00	19			
Density		138 kg/m ³									kg∕m³
Composition		Polyester (PET)									
Technology			Needle punching and thermosetting staple-fiber								
Melting temperature						260					°C
Resistance to UV rays and chemical agents			excellent								
Rot, mould, bacteria and rodent resistance			total								
Permeability	uni en ISO 11058	110	100	93	57	37	24	22	20	17	mm/s
Permittivity	CNR B.U. 144	0,70	0,68	0,62	0,45	0,35	0,24	0,20	0,19	0,18	s ⁻¹
Porometry	EN ISO 12956	86	85	80	75	70	57	55	50	50	micron
Humidity regain 20° 65% hum.		0,4						%			
Tensile strength MD/CD at break	uni en ISO 10319	5,5	7	9	14	18	24	28	32	38	kN/m
Elongation at MD/CD break	uni en ISO 10319					60					%
CBR puncture test	UNI EN ISO 12236	0,9	1	1,3	2	3	4,4	5	5,8	6,7	kN
Cone drop test	EN 918	33	30	28	12	9,5	8	6,5	4,6	3,5	mm

SUPPLY CHARACTERISTICS

0	
_	
0	
2	
. January	
0	
Ð	

		Drenotex 💽								
	130	150	200	300	400	500	600	700	800	U. o. M.
Width			up to 600							cm
Length	1	50	10	00	70	60	4	0	30	m
Diameter		from 50 to 70							cm	
Roll weight	117	135	120	180	168	180	144	168	144	kg

Recycled polyester

Notes

-											
	4194		~								
	0 * * 0					11					
					J						
		1									
	1										
	1	-	7								
		_	1						1		
				* 0							

